Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Text-to-LoRA — адаптеры LoRA по описанию задачи на естественном языке

Text-to-LoRA (T2L) — это гиперсеть, которая генерирует адаптер LoRA для LLM,
исходя только из текстового описания задачи. Без данных. Без обучения. Просто промпт → LoRA.

💡 Как работает:
▪️ Метаобученная гиперсеть принимает описание задачи
▪️ Генерирует task-specific LoRA в один шаг
▪️ Поддерживает сотни известных LoRA
▪️ Может обобщать на новые задачи

🚀 Почему это важно:
Традиционно адаптация LLM требует:
- большого датасета
- тонкой настройки
- вычислительных затрат

Text-to-LoRA делает то же самое в один шаг, просто по тексту. Это снижает технический порог и делает настройку доступной даже без ML-экспертизы.

🧬 Вдохновлено биологией:
Как зрение человека адаптируется к свету без обучения,
так и LLM может адаптироваться к задаче по описанию — через T2L.

📌 Новый шаг к адаптивным и доступным языковым системам.

📍 Представлено на #ICML2025

📄 Paper: https://arxiv.org/abs/2506.06105
💻 Code: https://github.com/SakanaAI/Text-to-Lora

@data_analysis_ml



tg-me.com/data_analysis_ml/3669
Create:
Last Update:

🧠 Text-to-LoRA — адаптеры LoRA по описанию задачи на естественном языке

Text-to-LoRA (T2L) — это гиперсеть, которая генерирует адаптер LoRA для LLM,
исходя только из текстового описания задачи. Без данных. Без обучения. Просто промпт → LoRA.

💡 Как работает:
▪️ Метаобученная гиперсеть принимает описание задачи
▪️ Генерирует task-specific LoRA в один шаг
▪️ Поддерживает сотни известных LoRA
▪️ Может обобщать на новые задачи

🚀 Почему это важно:
Традиционно адаптация LLM требует:
- большого датасета
- тонкой настройки
- вычислительных затрат

Text-to-LoRA делает то же самое в один шаг, просто по тексту. Это снижает технический порог и делает настройку доступной даже без ML-экспертизы.

🧬 Вдохновлено биологией:
Как зрение человека адаптируется к свету без обучения,
так и LLM может адаптироваться к задаче по описанию — через T2L.

📌 Новый шаг к адаптивным и доступным языковым системам.

📍 Представлено на #ICML2025

📄 Paper: https://arxiv.org/abs/2506.06105
💻 Code: https://github.com/SakanaAI/Text-to-Lora

@data_analysis_ml

BY Анализ данных (Data analysis)


Share with your friend now:
tg-me.com/data_analysis_ml/3669

View MORE
Open in Telegram


Анализ данных Data analysis Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Анализ данных Data analysis from tw


Telegram Анализ данных (Data analysis)
FROM USA